
International Journal of Computer Trends and Technology Volume 69 Issue 5, 6-12, May 2021
ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I5P102 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Designing and Implementing Shortest and Fastest

Paths; A Comparison of Bellman-Ford algorithm,

A*, and Dijkstra’s algorithms

Al Bager A. Al Bager. R1, Al Samani A. Ahmed2

1,2Faculty of Computer Science and Information Technology, Neelain University, Khartoum, Sudan.

Received Date: 04 April 2021
Revised Date: 10 May 2021
Accepted date: 12 May 2021

Abstract - This paper compares the performances of three

path algorithms, including the Bellman-Ford algorithm, 𝐴∗,

and Dijkstra’s algorithm. These algorithms have found the

paths in a map of Riyad,h, and the run times were compared

of these algorithms. The experimental findings revealed the

effectiveness of 𝐴∗ A search algorithm, followed by Dijkstra

algorithm and Bellman-Ford algorithm. This shows that

Dijkstra’s algorithm can be extended into various fields to
solve problems involving the computation of the shortest

distance between various locations.

Keywords - Computation, Geographic Information System,

Riyadh, Road time, Shortest path.

I. INTRODUCTION

Information is effectively gaining its importance

instantly. They become complex and excessive due to the

intensity and size of information volume. This information

should be adequately managed by organizing (Chen and Xu,

2019). The notion of an information system emerges as the

outcome of this requirement. Geographic Information
System (GIS) is a type of information systems, having

broader area applications (Pramudita et al., 2019). GIS is best

utilized for obtaining the information of a product and ca;

thus, it perform culture, life and security, environment, and

health procedures (Kim, 2019). For example, reaching to

accident area, in a traffic accident on a highway, at the

shortest time by an ambulance, and making the first aid rely

on numerous parameters. Precaution, for reaching the

accident areas, are taken into account for road information,

traffic intensity, hospital location, life safety, and

transportation network, must be efficiently managed (Parvin
et al., 2020). Assessing the time information is the best

practice for identifying the above information. GIS can assist

in collecting such information types.

One of the most critical challenges is finding the best

route for reaching a destination when it comes to emergency

situations. Finding the shortest path on a map is appropriate

and essential issue to be explored and solved (Schröder and

Cabral, 2019). Much initiative and research has been done to

find the best approach for solving this classic problem. These

research initiatives have resulted in the advancement of

different algorithms and experimental outcomes regarding

their performances. Initially, a class of modified 𝐴∗ search

algorithms were identified and their performances were

compared to existing state-of-the art shortest path finding

algorithms (Ak, Bahrami and Bozkaya, 2020). Afterward, the

possibility of utilizing genetic algorithms for finding
solutions to shortest path issues was undertaken in previous

studies. Lastly, real road network data was used to compare

with the performances of several different cutting-edge

algorithms.

 In this experiment, three of the more common shortest

path algorithms were compared including Bellman-Ford

algorithm, 𝐴∗, and Dijkstra’s algorithm. Road data was used
for comparing the performances of these algorithms for

finding the shortest node-to-node paths in the map of Riyadh

(Abdulaziz, Adewale & Man-Yahya, 2017). These

algorithms were integrated via JAVA, and their runtimes

were monitored for different test cases. The contribution and

motivation in conducting this experiment is to acquire a

better comprehension of how different algorithms perform

on the real data of Riyadh. These algorithms vary with

respect to their trade-off between speed and precision while

they are usually used in shortest issues. In this regard, it is

expected to find the algorithm that will explore the optimal

shortest path from a beginning point to an ultimate point in
the shortest time period.

Fig. 1 Map of Riyadh

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Al Bager A. Al Bager. R & Al Samani A. Ahmed / IJCTT, 69(5), 6-12, 2021

7

II. RELATED WORK

The most common shortest path issue is to find out the

shortest path from one node to another node in a focused

platform. The core objective of Goldberg and Harrelson

(2005) was to identify the fastest algorithm for computing
the solution for this node-to-node issue. The solution to this

issue can be explored by examining merely a segment of the

graph, and that shows that the algorithm’s run time was

relied on visiting nodes (Goldberg and Harrelson, 2005).

Thereby, the performances of algorithms were computed as

a function of the number of vertices in the solution platform.

Distance bounds are implicit in the domain description when

the classic 𝐴∗ search is utilized for solving the node-to-node

issue, and thus no preprocessing was needed. On the

contrary, a new pre-processing technique was developed to

compute the distance bounds rather than just allowing them
to be understood in the domain description. For this

approach, a number of landmarks are selected for computing

the shortest path distances between all apexes of each of

such landmarks. Afterward, they utilized such lower bounds,

the triangle inequality, and 𝐴∗ search for developing new

algorithms, which were named ALT algorithms.

It is of no surprise that several differences of this

algorithm have been developed within the years since 𝐴∗

search is one of the popular path-finding algorithms. For

instance, near-optimum path-finding algorithm namely

Hierarchical Path Finding (HPA) 𝐴∗ was presented by

Botea, Muller and Schaeffer (2004), which was a variation

of the conventional 𝐴∗ algorithm. The speed of HPA* was

10 times faster as compared to 𝐴∗ whereas exploring paths

that are throughout 1% of the optimal solution. This

approach classifies a map into associated local clusters. At

the local levels, the optimal distances are pre-computed to

cross the cluster whereas these are traversed in a single big

step globally. On the contrary, HPA* returns a complete

platform of sub-issues. This is beneficial for changing the

destination, not all initiatives will be wasted. Therefore, this

approach fits to dynamically modifying environments.

Su, Li and Shiu (2013) have proposed another variation

of 𝐴∗ namely the Genetic Convex 𝐴∗ (G-C𝐴∗) algorithm.

This variation automatically crops the original map into

different convex maps. The distance of the shortest path is

proven to equal their Manhattan distance between any two

vertices throughout a convex map where this distance is

formed between two grid points measured along vertices at

right angles. The genetic algorithm was employed in Genetic

Convex 𝐴∗ for merging adjacent convex maps and crop the

number of chosen key nodes.

A modified Dijkstra’s algorithm was investigated in

Noto and Sato (2000) as the experimental outcomes of

Goldberg and Harrelson (2005) indicated that the Dijkstra’s

algorithm was one of the core competitors of modified 𝐴∗

search algorithms. Noto and Sato (2000) extended the

traditional Dijkstras algorithm for reducing the search time

for acquiring a near-optimal solution. A new algorithm was

proposed for applying the Dijkstra method from both

directions since the traditional method needs a very long

search time considering long path. Despite this algorithm

takes merely one out of five of the search time of the

traditional Dijkstra method, it does not usually return the
optimal solution. Genetic algorithms can further be utilized

for solving the shortest path problem. The likelihood of

using a genetic algorithm was presented in Gen, Cheng and

Wang (1997) for solving the shortest path problem. The

most complex activity experienced by the researchers while

experimenting was to encode the path in a map into a gene.

They utilized a preferred-based encoding method for

representing all the map paths. In this approach, the gene

position on a chromosome was represented through a node

ID, and the value of this ID was utilized for representing the

preference of this node to create a unique path with all the

nodes (Gen, Cheng and Wang, 1997).

Efficient solutions were explored for shortest path on the

basis of optimization issues rather than comparing this

algorithm to existing state-of-the-art algorithms. This was

due to the performance of genetic algorithms cannot

presently outperform any of the traditional algorithms (Gen,
Cheng and Wang, 1997). Genetic algorithms and their

performances were implemented by Ismail, Sheta and Al-

Weshah (2008) and Machado et al. (2011). A genetic

algorithm was implemented by Ismail, Sheta and Al-Weshah

(2008) for solving a mobile robot path planning issue in a

static environment with predictable terrain. Three different

environments were proposed with different barriers, which

include a moderately scattered environment, a more difficult

scattered environment, and an indoor environment.

Routing involves moving packets of data across networks

from a source to a destination. Routing involves two phases.

The first phase is to find the optimal routing paths. The

second is the transport of the data packets in the network

using the path that has been established. The most important

part of the process of routing is the selection of the optimal

path for routing (Garcia et al., 2007). This is because there

are many constraints and rules to be met and also the

complexity of network topologies. Routing algorithms are
very important in the selection of the optimal path.

Dijkstra’s Algorithm is the standard for selecting the shortest

path because it is both simple and efficient (Arisoylu, 2016).

Many popular network simulators like OWns depend on

Dijkstra’s Algorithm to come up with static paths to be used

in the process of simulation.

However, in network simulations, the Dijkstra’s algorithm

“tends to introduce unnecessary link overload’ and thus

induces false conclusions” (Garcia et al., 2007). This shows

that it is important to come up with an extension to this

algorithm that will be more efficient in network routing.

The design of Dijkstra’s Algorithm is such that it solves

only single-source shortest path problems where there are no

negative weighs. Telecommunication networks are in this

class (Arisoylu, 2016). However, sometimes links are

Al Bager A. Al Bager. R & Al Samani A. Ahmed / IJCTT, 69(5), 6-12, 2021

8

bidirectional. Therefore, they have to be viewed as a pair of

graph edges with opposite directions. One of the most

popular applications of the Dijkstra’s Algorithm in network

routing is the Open Shortest Path First (OSPF) (Arisoylu,

2016). In many networks, the Spanning-Tree Protocol (STP)
runs before the OSPF on the network (Figure 2).

Fig. 2 Software’s interface

Thus, the spanning tree is a sub-graph which has all the

nodes. Therefore, network environments with redundant

links appear closed for the operation of network elements

and this is caused by the STP. This eliminates duplicate

messages like neighbor discovery messages (Garcia et al.,

2007). Rings allow additional levels of connectivity for every

node with the cost of just one additional link. The iterative

nature of Dijkstra’s algorithm causes it to place more paths in

particular links than in others in networks links that create

rings. Thus, one of the links is likely to be chosen more often

than the others (Garcia et al., 2007).

Dijkstra’s algorithm is used in finding the shortest path

from a source vertex to the destination vertex (Zhou, 2018).

The algorithm keeps two sets. One set stores vertex with the

shortest distance from the source while the other set has the

vertices that are yet to be visited (Broumi et al., 2016). The

property that makes Dijkstra’s Algorithm to be considered a

greedy algorithm is that it picks the vertex that has minimum

distance from the source vertex to give the shortest path.

The algorithm is as follows:

A. The algorithm is as Follows

 Create set spSet or the shortest path tree set that will

maintain track of all the vertices that are included in the

shortest path tree (Zhou, 2018).

 Mark all the vertices that have not yet been visited with

INT_MAX (infinity) and the source node mark as zero

(Zhou, 2018).

 The spSet does not include all of the graph vertices.

 Pick one vertex that is not in the spSet and label it “u”.

This vertex must have the lowest weight or value.

 Add the vertex to the spSet.

 Update distances for the other vertices adjacent to “u”.

For all the adjacent vertices “v”, if the sum of the

distance of the edge from “u” to “v” and the distance

from the source of vertex “u” is less than the distance

value of “v”, update the value of “v” (Figure 3)

Fig. 3 Dijkstra algorithm flowchart

The Dijkstra’s algorithm can be extended to solve these

limitations. In a graph, each node can be identified by a

unique node identification number (Arisoylu, 2016). The

initial Dijkstra’s Algorithm can be extended to detect any

possible equal cost routes, and make use of more conditions

on the bases of the node identification numbers to choose

between the routes. Since the additional conditions only run

in the presence of over one path candidates for the shortest

path, this extended Dijkstra’s Algorithm will still provide the
shortest path (Garcia et al., 2007).

Roads are one of the most frequently used modes of

transportation. In fact, the use of roads can be sad to be

indispensable in the world today (Sivakumar and

Chandrasekar, 2014). This means that computing the shortest

path between various locations is an important issue which

happens to be a key problem when it comes to road

networks. The many applications of the need to find the

shortest distance between places led to the creation of

various shortest path algorithms with the aim of overcoming
the problem. However, the problem still persists in road

networks (Sivakumar and Chandrasekar, 2014). Finding the

shortest path between two places is a fundamental problem in

road networks because many people face problems when it

comes to planning trips in which they will use their own

vehicles.

Al Bager A. Al Bager. R & Al Samani A. Ahmed / IJCTT, 69(5), 6-12, 2021

9

Since the road links in a city possess different

congestion levels at various times of the day, making it

difficult to determine the shortest path. Therefore, the

shortest path can only be determined at the time when need

comes, and using an algorithm that is able to take into
account all the factors that are involves in determining the

length of time that can be taken between two locations

(Sivakumar and Chandrasekar, 2014). There are also cases in

which large networks of roads are involved in the

application, making the computation of the shortest path

quite difficult because of the many applications that have to

be involved in finding the shortest path over road networks.

The shortest path algorithms that have been developed are

divided into three categories. There are single-source shortest

path algorithms, single-destination shortest path algorithms,

and all-pairs shortest path algorithms (Sivakumar and

Chandrasekar, 2014).

Dijkstra’s shortest path Algorithm is one of the first

algorithms to be developed and has led to the creation of

many different shortest path algorithms. It is also the most

frequently used algorithm when it comes to problems of

solving the shortest path between different locations

(Sivakumar and Chandrasekar, 2014). According to Bauer et

al. (2010), there is need to come up with an efficient shortest

path route specifically for the road network. They came up

with a new algorithm for calculating the shortest path. This

they did by modifying Dijkstra’s Algorithm by using goal-
directed and combining hierarchical techniques (Bauer et al.,

2010). Although the algorithm that they developed is better

than Dijkstra’s Algorithm when it comes to the results of

computation, it takes quite a lot of time to carry out

computation than the existing Dijkstra’s Algorithm.

Swathika et al. (2016) also carried out an analysis of the

various available shortest path algorithms. Through this, they

found that the already existing algorithms abound in

problems. Therefore, they developed another shortest path

algorithm which they called the A* shortest path algorithm,

an extension of Dijkstra’s shortest path algorithm (Swathika
et al., 2016). The main difference is that the new algorithm

included such parameters as modified weights and cost

which are not there in Dijkstra’s shortest path algorithms.

The results that this algorithm gives are better than those that

are given by the original Dijkstra’s shortest path algorithm.

The complexity of the computation is quite high (Swathika et

al., 2016). To reduce the computational time, they used the

partitioning graphs technique used in the original Dijkstra’s

algorithm so as to reduce computation.

Sivakumar and Chandrasekar (2014) state that on road
networks, the computation of the shortest distance between

any two points is a big problem. They carried out an analysis

of the various shortest path algorithms that are already in

existence with the aim of determining the most efficient one

in calculating the shortest distance between different points

in road network (Sivakumar and Chandrasekar, 2014).

Dijkstra’s algorithm was found to be the most appropriate in

the calculation of the shortest path. However, they found out

that the existing Dijkstra’s algorithm needs some

modifications to be highly appropriate and become more
efficient in finding the shortest path and to ensure that

computation is not very complex (Sivakumar and

Chandrasekar, 2014). They proposed a new algorithm which

they called the Modified Dijkstra’s shortest path algorithm.

In the proposed algorithm, different parameters rather than

just one are used in finding the shortest path between

different locations. They measured the efficiency of the new

model by measuring its time complexity and nodes

(Sivakumar and Chandrasekar, 2014). The proposed

algorithm was compared with the Dijkstra’s algorithm,

which showed that MDSP took a smaller number of nodes

compared to Dijkstra’s algorithm. It also takes lesser time in
computing the shortest path than the already existing

algorithm.

Ananta, Jiang and Muslim (2014) proposed a multicast

algorithm for SDN on the basis of the extended algorithm

that was proposed by Jiang et al (2014). Pyretic was used in

implementing the algorithm proposed and compare it with

other basic algorithms related to it. Comparisons of the

algorithm they proposed with other algorithms shows it as

the most efficient. The proposed multicast algorithm has its

basis on the multicast tree construction algorithm. It makes
use of the extended Dijkstra’s algorithm for multicast group

publisher which sends data packets to every member in the

multicast group of subscribers (Ananta, Jiang & Muslim,

2014). “The multicast tree construction algorithm for the

proposed multicast algorithm is called the EDSPT (Extended

Dijkstra’s Shortest Path Tree) algorithm” (Ananta, Jiang &

Muslim, 2014). Simulation results showed that the proposed

multicast algorithm was more efficient than the algorithms

that existed before it in measuring the shortest distance

between locations.

Abdulaziz, Adewale and Man-yahya (2017) proposed an
improved extended Dijkstra’s algorithm for software-defined

networking (mED-SDN). The man feature of mED-SDN is

REST. The application must be authenticated against the

controller for REST API calls to be made to the controller.

To control congestion, the new algorithm uses bandwidth as

the evaluation criterion for the improvement of congestion in

software-defined networking typologies. When the utilization

of the bandwidth goes above the threshold that has been set

by the algorithm, it reverts to the controller in search for a

new path. In order to get the bandwidth usage link, the

congestion component measures he topology’s bandwidth
and uses the REST AP present on the controller so as to

collect the cumulative bytes transmitted through the

openFlow switches port.

Al Bager A. Al Bager. R & Al Samani A. Ahmed / IJCTT, 69(5), 6-12, 2021

10

III. ANALYSIS

All three algorithms were tested on 10 different pairs (30

in total). These paths were selected, as mentioned in the

experimental design section, that the Euclidean distances

were short and some of them were longer between some of
them. The Euclidean distances of each of these paths was

computed and presented in Table 1. It can be observed from

the run times for 𝐴∗ search for each of the pairs remains

consistent within all of the trials (Table 2). Likewise, the run

times, as shown in Table 3 and 4 are moderately consistent

within all three trials for the Bellman-Ford and Dijkstra

algorithm. Before prior testing, it was essential to identify

that the paths were not computed on the basis of rising

distances between them. Therefore, findings plot a better

visual illustration of the association between the end node,

the run time, and the start node.

For the 𝐴∗ search algorithm, the run time for path

finding was between 4.0-15.7 seconds for the paths tested.

The run time has further adequately returned null for the path

7 because there was no existence of path, leading from its

start node to its end node. The run time was not often

elevating when the distance rose although there was a slight

rise in the association between the run time and distance of

the paths. These might have occurred because the distances

were larger for few paths, some might have needed going via

several road segments. In the context of Dijkstra algorithm,
the association between the run time and distance was

stronger as can be witnessed. This algorithm, like previous

one, returned null for a non-existing platform. In addition,

the run times for path finding were greater in Dijkstra

algorithm as compared to the 𝐴∗ search run times. The run

times rose more rapidly with the Dijkstra algorithm since it

works effectively when the goal nodes were closer to the

commencing nodes.

The Dijkstra algorithm ends as soon as the destination
node is in reachability for this behavior, and this shows that

computation time was a lot rapider. Lastly, the findings have

indicated that the run times are higher for all the paths from

the Dijkstra algorithm to the 𝐴∗ search algorithm. It was

observed that 𝐴∗ search was faster as it utilizes a beat first

search approach and uses a heuristic. On the contrary, a

greedy approach was used in Dijkstra algorithm in order to

search, and does a blind search, which is a drawback in a

data set such as the Riyadh data as it was huge. Lastly, the

Bellman-Ford algorithm performed adversely out of the three
tested experiments. Higher run times were witnessed for the

respective algorithm as compared to 𝐴∗ search and Dijkstra

algorithms for every tested path. On the contrary, the correct

outputs were returned; for instance, returning null for a path

that did not exist. The Riyadh road data was devised for

handling adverse edge weights since but it performs

adversely as compared to the other algorithms in the situation

where all the edges were non-negative.

IV. EXPERIMENT, DESIGN, AND RESULTS

A total of ten sets of start-end nodes were selected, for

the experiment, and texted on all three algorithms for

calculating the run times. A combination of both short and

long paths was selected for ensuring that the algorithm works
perfectly. The longest path selected has a distance of 4394.4

((1370, 5065), (1037, 9084)), whereas the shortest path

selected has a distance of 503.4 ((1160, 7685), (0185, 7294)).

A set was further encompassed where it will be unlikely for

the algorithms to perfectly explore a path as it does not exist

((0540, 7237), (2259, 7064)). It can be observed, that all

algorithms return null for path seven as there was no path

leading from that start to end node (Figure 3). Three trials

were conducted for each algorithm and the averages were

computed for better accuracy. The ten paths as well as their

respective distances were presented in Table 1. The run times

of the 𝐴∗, Bellman-Ford, and Dijkstra algorithms were

shown in Tables 2-4, respectively from all trials and their

averages. A plot of distance versus run time was also

illustrated for all three algorithms.

Table 1. Paths

Path Distance

1 1756.1

2 824.1

3 1379.1

4 2579.6

5 4493.5

6 504.1

7 2514

8 589

9 2015.1

10 2524

Table 2. 𝐀∗ 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦

Path Trial 1

(ms)

Trial 2

(ms)

Trial 3

(ms)

Average

(ms)

1 6 6 6 6

2 7 7 7 7

3 15 17 17 16.3

4 9 9 10 10.5

5 20 21 22 23

6 3 2 2 2.5

7 Null Null Null Null

8 5 6 6 6.8

9 10 11 12 12.5

10 9 10 11 10.5

Al Bager A. Al Bager. R & Al Samani A. Ahmed / IJCTT, 69(5), 6-12, 2021

11

Fig. 4 Distance between Start and Goal Nodes

Table 3. Dijkstra’s algorithm

Path Trial 1

(ms)

Trial 2

(ms)

Trial 3

(ms)

Average

(ms)

1 15 15 20 16.5

2 5 5 6 7.1

3 29 30 29 29.5

4 44 46 45 45.1

5 60 58 57 58

6 2 2 2 2.5

7 Null Null Null Null

8 11 9 10 11.1

9 24 25 29 26.1

10 22 23 22 23.1

Table 4. Bellman-Ford Algorithm

Path Trial 1

(ms)

Trial 2

(ms)

Trial 3

(ms)

Average

(ms)

1 20 19 20 20.5

2 12 11 11 11.5

3 56 52 56 54.1

4 26 32 31 29.4

5 78 79 71 73.4

6 14 16 16 15.6

7 Null Null Null Null

8 18 18 17 18.1

9 34 35 32 33.1

10 30 29 29 29.4

The selection of the shortest path using Dijkstra’s

algorithm is very important in various scenarios to cut on

costs and time spent. This is because there are many

emergency situations that require the shortest path between
locations to be found for the shortest time to be taken

between various locations. This algorithm is the fastest

“single-source shortest path algorithm for arbitrary directed

graphs having unbounded non-negative weights” (Mathur,

Jakhotia & Lavalekar, 2014). When used, it is not required to

keep investigating the paths because once it runs, the shortest

that that can be used is discovered without having to draw

any more diagrams. As such, it makes the getting of results

faster and reduces the cost of computation even for large

problems. The only limitation of this algorithm is that it does

not support negative weights on the edges.

The paper has described the various areas into which

Dijkstra’s algorithm can be applied. In road networks, the
algorithm has been extended to calculate the locations

between various locations taking into account such factors as

traffic jam at various time of the day. It has also been used in

network routing protocols to help in finding the shortest path

between routed devices. In software-defined networking, it

has been extended to consider the weights not only at the

edges but also on the nodes and also to consider negative

weights on the edges. In autonomous evacuation navigation

system, it has been extended so that it can detect not only the

shortest but also the safest path. This shows that Dijkstra’s

algorithm can be extended into various fields to solve
problems involving the computation of the shortest distance

between various locations.

V. CONCLUSION
By concluding, the real road data of Riyadh was used to

test the performances of the Dijkstra, 𝐴∗ search, and

Bellman-Ford algorithms. The experimental findings

indicated that the 𝐴∗ search algorithm performed effectively

of all the tested algorithms. On the contrary, the Dijkstra

algorithm had its benefits in that it was less complicated for

programming as compared to the 𝐴∗ search. If Bellman-Ford

was used with negative edges even, it could be a very

beneficial algorithm.

There are several interesting probabilities that can be

investigated with respect to future work in this field. Firstly,

the implemented algorithms can be changed for performing

more efficiently. For instance, 𝐴∗ search algorithm could

have had a better heuristic function. On the other hand, it

could be changed for performing effectively such as the

algorithms proposed in previous studies. Future work could
encompass experiments that would be performed for

determining how effectively these modified algorithms were

than to the 𝐴∗ search algorithm implemented in this study.

Genetic algorithms are also potential area for future work in

the field of finding path algorithms.

In road networks, the algorithm has been extended to

calculate the locations between various locations taking into

account such factors as traffic jam at various time of the day.

It has also been used in network routing protocols to help in
finding the shortest path between routed devices. In

software-defined networking, it has been extended to

consider the weights not only at the edges but also on the

nodes and also to consider negative weights on the edges. In

autonomous evacuation navigation system, it has been

extended so that it can detect not only the shortest but also

the safest path.

Al Bager A. Al Bager. R & Al Samani A. Ahmed / IJCTT, 69(5), 6-12, 2021

12

REFERENCES
[1] Abdulaziz, A. H., Adewale, E., and Man-Yahya, S. Improved

Extended Dijkstra’s Algorithm for Software Defined Networks.

International Journal of Applied Information Systems, 12 (2017) 22-

26.

[2] Ak, R., Bahrami, M. and Bozkaya, B. A time-based model and GIS

framework for assessing hazardous materials transportation risk in

urban areas. Journal of Transport & Health, 19 (2020) 100943.

[3] Ananta, M. T., Jiang, J. R., & Muslim, M. A. Multicasting with the

extended Dijkstra’s shortest path algorithm for software defined

networking. International Journal of Applied Engineering Research,

9(23) (2014) 21017-21030.

[4] Arisoylu, M. An initial analysis of packet function-aware extension to

Dijkstra algorithm for wireless networks. EURASIP Journal on

Wireless Communications and Networking, 2016(1)(2016) , 65.

[5] Bauer, R., Delling, D., Schieferdecker, P., Schulters, D., and Wagner,

D. Combining hierarchical and goal-directed speed-up techniques for

Dijkstra's algorithm. ACM Journal of Experimental Algorithmics,

(2010) 33-42.

[6] Botea, A., Müller, M. and Schaeffer, J.,. Near optimal hierarchical

path-finding. J. Game Dev., 1(1) (2004) 1-30.

[7] Broumi, S., Bakal, A., Talea, M., Smarandache, F., & Vladareanu, L.

Applying Dijkstra algorithm for solving neutrosophic shortest path

problem. In 2016 International Conference on Advanced Mechatronic

Systems (ICAMechS) (2016) 412-416. IEEE.

[8] Chen, Q. and Xu, N., 2019, December. Research on the Shortest Path

Analysis Method in Complex Traffic Environment Based on GIS. In

2019 IEEE 4th Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC) 1, 208-212. IEEE.

[9] Garcia, N. M., Lenkiewicz, P., Freire, M. M., and Monteiro, P. P.

2007. On the Performance of Shortest Path Routing Algorithms for

Modeling and Simulation of Static Source Routed Networks--an

Extension to the Dijkstra Algorithm. In 2007 Second international

conference on systems and networks communications (ICSNC 2007)

60-60. IEEE.

[10] Gen, M., Cheng, R. and Wang, D., April. Genetic algorithms for

solving shortest path problems. In Proceedings of 1997 IEEE

International Conference on Evolutionary Computation (ICEC'97)(

1997) 401-406. IEEE.

[11] Dr. Kavita, Dr. M. Anji Reddy, Geospatial Database Creation for

Town Planning Using Satellite Data under GIS Environment SSRG

International Journal of Civil Engineering 4(6) (2017) 98-102.

[12] Goldberg, A.V. and Harrelson, C., January. Computing the shortest

path: A search meets graph theory. In SODA 5,(2005) 156-165).

[13] Ismail, A.T., Sheta, A. and Al-Weshah, M.. A mobile robot path

planning using genetic algorithm in static environment. Journal of

Computer Science, 4(4) (2008) 341-344.

[14] Jiang, J. R., Huang, H. W., Liao, J. H., and Chen, S. Y. Extending

Dijkstra's shortest path algorithm for software defined networking. In

The 16th Asia-Pacific Network Operations and Management

Symposium (2014) 1-4. IEEE.

[15] Kim, H., 2019. Using Geographic Information Systems (GIS) to

optimize delivery system services for BCCLS libraries.

[16] Machado, A.F.D.V., Santos, U.O., Vale, H., Gonçalvez, R., Neves, T.,

Ochi, L.S. and Clua, E.W.G., November. Real time pathfinding with

genetic algorithm. In 2011 Brazilian Symposium on Games and Digital

Entertainment (2011) (215-221). IEEE.

[17] Noto, M. and Sato, H., October. A method for the shortest path search

by extended Dijkstra algorithm. In Smc 2000 conference proceedings.

2000 ieee international conference on systems, man and

cybernetics.'cybernetics evolving to systems, humans, organizations,

and their complex interactions'cat. no. 0 3 (2000) 2316-2320. IEEE.

[18] Parvin, F., Ali, S.A., Hashmi, S.N.I. and Khatoon, A.. Accessibility

and site suitability for healthcare services using GIS-based hybrid

decision-making approach: a study in Murshidabad, India. Spatial

Information Research,(2020) 1-18.

[19] Pramudita, R., Heryanto, H., Handayanto, R.T., Setiyadi, D., Arifin,

R.W. and Safitri, N., October. Shortest Path Calculation Algorithms

for Geographic Information Systems. In 2019 Fourth International

Conference on Informatics and Computing (ICIC) (2019) 1-5. IEEE.

[20] Schröder, M. and Cabral, P.. Eco-friendly 3D-Routing: A GIS based

3D-Routing-Model to estimate and reduce CO2-emissions of

distribution transports. Computers, Environment and Urban Systems,

73 (2019) 40-55.

[21] Sivakumar, S., and Chandrasekar, C. Modified Dijkstra’s Shortest Path

Algorithm. International Journal of Innovative Research In Computer

And Communication Engineering, 2(11) (2014) 1-7.

[22] Su, P., Li, Y., Li, Y. and Shiu, S.C.K. An auto-adaptive convex map

generating path-finding algorithm: Genetic Convex A. International

Journal of Machine Learning and Cybernetics, 4(5)(2013) 551-563.

[23] Zhou, T. Deep learning models for route planning in road networks.

(2018).

